帆软商业智能技术

帆软官方技术团队,上BI,选帆软,专注BI十四年。IDC认证国内占有率领先,超11000家中大型企业选择!

  • 博客(13)
  • 收藏
  • 关注

原创 三种方法绘制雷达图,用最快的时间做出最好看的可视化图表

雷达图是通过多个离散属性比较对象的最直观工具,掌握绘制雷达图的方法将会为生活和工作带来乐趣。本例数据来源于网络,某大学本科一年级不同分院学生在五种核心通识能力方面的数据,使用多个工具来绘制多级雷达图,即在一组同心圆上填充不规则五边形,其每个顶点到圆心的距离代表分院学生的某种能力。本文通过Excel、Python和FineBI分别绘制雷达图:方法一 Excel绘制最简单的方法便是使用Excel绘制雷达图,绘图步骤如下图所示,选中数据,插入图表,由于雷达图不是最常用的图表,需要展开所有图表才能找到,展开

2021-06-30 09:20:03 51 2

原创 我用大屏模板做年中可视化报告,惊艳了在场的同事和领导

2021年马上就过去一半了,我和我的小伙伴们纷纷开始忙碌的年中复盘和汇报。正忙着汇总Excel数据、写word讲稿、找PPT模板时,我发现隔壁组的老王独自在大会议室偷偷调试起了那台汇报用的电视机。不会吧不会吧,年终汇报还有一周呢,这家伙PPT都做好了?我于是悄悄挤到门缝,终于看清了他在电视机上的年终汇报:好家伙,这是什么操作?他去年带的项目还没我多,凭什么汇报看起来比我精彩多了?我看着我辛勤了一年的组员和生硬的年终汇报PPT,咬咬牙求助,终于找到了这张模板……1.动态模板VS静态PPT我们

2021-06-25 09:49:48 71

原创 老板不相信我的方案结论!怎么让数据分析驱动决策?

大数据时代,人人都说数据驱动决策,但实际上很多公司观念还是没转过来,我们常看到的,是数据被业务追着屁股要数据,感觉自己才是被驱动的那个。今天就和大家聊一聊,数据分析师想驱动决策时面临的几大尴尬,以及如何主动出击,破解难题。数据基础设施落后很多公司领导嘴上高喊数字化转型,实际上拿着数据当牌坊,既不重视底层数据建设,也不规范数据流程,导致内部数据分散混乱,有时想找个数据找半天,拿到的原始数据又脏,严重拖垮了工作效率。如果领导不够重视,我们平时就要自己尽力推动数据质量的改善,毕竟如果基础建设没做好,苦的永

2021-06-24 10:21:20 22

原创 为什么说不要去银行做软件开发,而要去做数据分析?

老李有很多银行做信息化和数字化的朋友,对这个领域也了解不少。如果去银行,不要去软件开发,别的岗可以考虑。我不是想劝退你,但是你真的确定要去银行吗?或者你进去了再来看这个问题会有答案。1、银行的岗位和收入银行科技岗有很多种类,总得来说内部鄙视链就是:信息科技岗>数据中心>软件开发=门卫不要笑,软件开发就是子公司做的事情,在人家别的部门眼里,你软件开发工程师不就是地位最低的吗?可以去做信息科技岗,或者数据中心也不错。软开你有可能进的就是边缘项目组,用的奇葩框架,做项目都不需要动脑子,直接sql就行

2021-06-23 09:09:12 95 1

原创 为什么我不建议产品经理硬“抄”别人的用户画像?

一提到用户画像,很多人的脑海里就冒出各种标签,性别、年龄、地区......然后用这一堆名词拼出一个人形,就像这张图:画出用户画像不难,但当我们要真正拿它做分析的时候,常常会发现无从下手,到最后只能直接把数据库里的数据照搬到报告上:男女用户比例5:1 30-50岁占比60% 广东用户占比80% 苹果和华为用户分别占比25%、35%这是做用户画像分析常犯的一个错误,分析是用来解决问题的,但似乎即便我们用这么多词把用户概括出来了,也不能用来解决问题。其实,用户画像是一个客观的东西,但做决.

2021-06-18 11:24:07 24 1

原创 99%的人都不会的用户流失分析,到底应该怎么做?

在运营中,计算用户数量的流失率是必不可少的,但很多人只停留在知道数据上,找不到方法分析流失原因或者是提出减小流失的策略。今天我们就以App的留存举例,聊聊如何做用户流失的分析。01 误区篇首先,我们要知道两个做用户流失分析常见的误区:第一,试图挽留每一个用户。强扭的瓜不甜,很多用户的流失是无法避免,比如用户兴趣的转移,比如用户与产品目标受众不符,这些用户花再多地钱,做再多的优化可能都没啥用,对于这部分用户,干脆就放弃,避免无效投入。第二,试图弄懂每一个流失原因。比如某天流失率突然比.

2021-06-17 09:59:42 52

原创 Excel太丑、敲代码太烦,这才是老板最喜欢看的神仙报表

跟数据打过交道的人,一定知道报表开发对于IT人是种多么痛的领悟,尤其是当业务人员整天催促IT取数、做报表模板的时候,每次需求都很紧急,IT人就不得不加班加点,苦不堪言。这还不是最痛苦的事情,一旦业务人员的需求发生变化了,就不得不重复返工,按照他们的要求再取数、做模板,因为缺少统一的报表模板,所以哪怕很多业务部门需求的报表差异很小,IT人都要重复开发,浪费效率。最后好不容易跟业务人员配合将报表开发出来了,老板一句“太难看”就可能把报表直接打回来,Excel虽然也能开发报表,但是对于各种表头复杂、信息量

2021-06-16 09:44:56 48 1

原创 你和数据分析大神之间,就差这7个沟通技巧

常常有读者跟我抱怨,在他们公司里,顶着“数据分析师”的title,干着人肉取数机器的活,接需求时要当好业务的乙方,出报告时还经常被领导嫌弃,工作成果也不容易被衡量和认可。工作了几年发现,事情做了不少,但就是没啥成就感。其实,数据分析并不是一个纯技术的活儿,如果不想当一个“人微言轻”的工具人,想高效完成工作,光靠技术和理论是不够的,沟通能力也是一项关键的技能。数据分析师需要沟通的环节主要就是对接需求、理解业务和汇报成果,今天咱们从这三个方面出发,分享一些高效沟通的小技巧。找对的人沟通.

2021-06-11 11:33:41 26 1

原创 IT大神提升代码效率的秘密,都私藏在这10个神仙软件里

IT大神提升代码效率的秘密,都私藏在这10个神仙软件里2021-06-09 17:25·IT技术管理那些事儿今天就拿出我的私藏工具送给你们,部分内容也适合职场人士。每款都是下了不后悔!而且光推工具不给下载地址的都是耍流氓~文末有软件获取方式一、Everything不光是程序员,这就是职场人都要拥有的!最强文件搜索神器。这是windows平台可下载的神奇,1s找到你想找的文件绝对不是吹牛的,而且超级小不占用电脑空间。二、sinpaste这也是适用于windows,这是.

2021-06-10 10:44:34 19

原创 连数据都读不懂,你凭什么说会数据分析?

连数据都读不懂,你凭什么说会数据分析?原创帆软软件2021-06-07 18:14在大部分企业里,数据分析师忙于各种爬取报表取数,应付各种常规报表。我经常收到一些留言,这些活儿让一个熟练的实习生都能干,那我们作为数据分析师的价值体现在哪呢?没错,如果每天都在这样机械地做事,无异于温水煮青蛙,我认为数据分析师要想实现自我增值,想跳槽能拿到更高的待遇,就要提高自己的分析能力。具体来说,数据加工是能力基础,但更重要的,是对数据的主动解读能力。今天要介绍的这四招,就是读懂数据的四大法宝!01 熟悉业

2021-06-09 09:13:19 23

原创 一张图剖析企业大数据平台的核心架构

一张图剖析企业大数据平台的核心架构帆软软件2021-06-02 17:04我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多:从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。一、数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的.

2021-06-03 09:42:41 42

原创 5.6亿人没有存款、人均负债13万,大数据揭示负债累累的年轻人

最近一位清华副教授的言论在网上火了:从丧文化到佛系,从打工人到躺平,越来越多的年轻人在互联网上不断寻找着共鸣、创造着新词,然而很多既得利益者都在职责或者阴阳怪气当代的年轻人,说他们不热爱劳动,不热爱奋斗。究其根本,极度严重的内卷化已经让年轻人的生存空间迅速减小,暴露的矛盾已经到了临界的状态。今天老李从国家统计局找了一下数据,导入到了可视化工具FineBI里,探究一下如今年轻人的生存状况有多么严峻:5.6亿人连一分钱的存款都没有我们先来看一张“表面上很和谐”...

2021-06-02 09:31:10 62 1

原创 五种高大上的可视化地图,10分钟快速上手,一个代码都不用敲

在数据可视化中,地图可视化是最最常用的高级图表之一了,尤其是各种企业的可视化大屏里,要是不放张地图大屏,都不好意思跟老板或者同行看。这种可视化地图虽然高大上,但是制作方法其实并不难,主要有两种方法:第一种是用python、echarts组合的方法,这种方式要求具有一定的JS编程基础,难度较高,但是自由化程度很高,可以实现诸如喷泉图的效果,推荐有编程基础的人学习。第二种是使用可视化平台,比如国内的FineBI、国外的BatchGeo等,这种方式的学习成本很低,基本不...

2021-06-01 10:39:06 61 1

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除