连数据都读不懂,你凭什么说会数据分析?

FineBI 同时被 3 个专栏收录
51 篇文章 1 订阅
93 篇文章 0 订阅
28 篇文章 1 订阅

在大部分企业里,数据分析师忙于各种爬取报表取数,应付各种常规报表。我经常收到一些留言,这些活儿让一个熟练的实习生都能干,那我们作为数据分析师的价值体现在哪呢?

没错,如果每天都在这样机械地做事,无异于温水煮青蛙,我认为数据分析师要想实现自我增值,想跳槽能拿到更高的待遇,就要提高自己的分析能力。具体来说,数据加工是能力基础,但更重要的,是对数据的主动解读能力。今天要介绍的这四招,就是读懂数据的四大法宝!

01 熟悉业务打基础

数据本身没有意义,放在业务环境下才有价值。所以我们解读数据,绝对不能就数论数。举个简单的例子,比如下面这张图是某公司一周的销量数据。

连数据都读不懂,你凭什么说会数据分析?

如果解读成,周六周日销量较周一到周五有明显的下滑,所以要重点关注周六周日的销量。那这个解读显然没有结合业务周期来看,工作日销量高、休息日销量少,这个公司很可能是做B2B生意的,也可能是CBD的餐厅。

所以,如果没有对业务有足够的理解,做出的分析可能就是没有意义甚至是不利的。那我们该如何理解业务呢?

首先是要理解每一项数据指标背后的业务含义,分析师和业务人员对同一个指标不能有歧义。

比如上图中的“销售额”,如果发生在电商,指的是下单金额还是减去优惠后的支付金额呢?是按支付后计算还是按收货计算呢?有没有考虑退款呢?

其次我们需要了解数据的评判标准。比如前面的例子中,评判业绩好坏,我们也不能光看销售额,还要对比公司给定的业绩目标,还要对比同行业同体量公司的同期销售额,还要考虑数据大小的现实区别,假设上例中商品的单价是30万,每天成交1-3单,那么尽管在折线图中表现的趋势非常明显,但偶然性偏多,那这个折线图参考意义就不大。

连数据都读不懂,你凭什么说会数据分析?

最后还要了解业务的周期性。周期性又分为自然周期性和生命周期性。自然周期就比如空调、旅游等有淡旺季之分,不同季节分析策略应有所不同;生命周期比如一款app会经历上图的四个时期,不同时期的对各项指标的追求是不同的,可能成长期追求拉新,成熟期追求利润,所以不同时期分析的侧重点也是不同的。

对数据分析师来说,以上三条对业务的理解越深入越好,这就需要我们多和业务人员沟通,在对接需求的时候多想多问。

02 结合环境更深入

在熟悉业务后,我们通常还需要重视那些异常的、突发的波动,这会让我们的分析更加全面,通常还能带来意外的收获。

还是一开始的例子,周六周日销售额骤降,我们还需要考虑环境因素的影响,有可能交易系统恰好在周六周日两天频频卡顿,许多订单没有成功,也有可能促销活动恰好到周六周日结束,分析出结论后还能得出优化的意见。

连数据都读不懂,你凭什么说会数据分析?

再比如,疫情初发期间,远程办公App活跃用户和活跃时长激增,我们做数据解读和前瞻性展望时,也需要结合国内外疫情控制情况进行分析。

03 善用工具有奇效

大数据时代,专业的数据分析工具,早已成为大厂的标配。就拿我在用的FineBI来说,可以让数据解读效率max!

FineBI有一套自助分析的流程。比如在数据清洗这一阶段,FineBI不会上来就展示这些密密麻麻的数据,而是会先让咱们明确目标,然后点击选择对应操作,只需鼠标操作就能一步一步靠近目标。

连数据都读不懂,你凭什么说会数据分析?

在FineBI的帮助下,整个数据处理和制作图表的过程变得简单有效,而且还内置了非常多的图表样式,傻瓜式生成,满足各种分析场景,省去了大量的繁杂工作,让我们完全可以把精力聚焦在数据解读上。

连数据都读不懂,你凭什么说会数据分析?

把多张图表放一块联动,还可以做成一个可视化大屏,直观又简单,帮助我们在做分析报告时更清楚地讲解。

连数据都读不懂,你凭什么说会数据分析?

 

04 过度解读不可取

当然,解读数据也是要有限度的,过度解读可能会得出违背事实的结论。怎么避免过度解读呢?

一方面是避免放大数据波动的后果。比如一段时期内销量的波动都在10%以内,是在可接受范围内的,那如果非要分析个二三四结论出来,就容易把细微甚至毫不相关的影响因素当成优化建议的重头戏,这是舍本逐末,我们更应该关注整体趋势的变化。

连数据都读不懂,你凭什么说会数据分析?

另一方面要忽视中介变量的影响,比如有人分析发现雪糕的销量越高,下海溺亡的小孩子数量越多,因此建议出台减少销售雪糕的政策。这其实是因为夏天到了,雪糕销量上涨了,去海里游泳的孩子也多了,溺亡和雪糕之间没有因果关系。

具体该怎么做呢?首先就是抓主要矛盾,将主要精力放在找对结果影响最大的因素上,其次要运用批判性思维,核对逻辑链条的严谨性。

总之呢,读懂数据是个硬技能,既需要保持对数据变化的敏感,也需要长期的观察和积累,既需要和业务人员深入沟通,也需要自己加深对行业的认识。

ps:本文中的商业智能BI平台软件提供给大家,回复“数据”即可!

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值