大数据平台不是救世主!做好数字化转型,得先解决这一问题

企业数据管理团队最大的一个挑战就是跨部门数据的整合,因为部门墙到处都是。

对于大多数企业,需要先破后立,通过大数据平台项目的形式进行跨部门的数据采集和整合。因为在项目阶段,公司领导一般比较关注,而规划等部门也会强势介入,因此跨部门的一些工作往往能有效推进。

这个时候,数据团队则要顺势而为,重兵投入,别人以前也许可以不配合,但这次由于项目的因素不得不配合,不抓住机会更待何时?

而笔者看到很多企业的大数据平台侧重的却是平台和工具的建立,大家都喜欢看得到的东西,各种技术方案的选型和论证啥的,但却忘了大数据平台的核心根本不是平台和技术,而是数据的整合。

大数据平台不是救世主!做好数字化转型,得先解决这一问题

 

因此,也许A和B企业都完成了大数据平台项目的建设,但获得的结果可能是不一样的。

A通过这次机会新增了企业30-40%的数据,而B也许只是把原来的数据通过新平台重新捣鼓了一遍,造成的后果是业务部门没有感知。领导有时就会疑惑:难道钱都打了水漂?

数据团队在感叹部门墙林立的时候,就要想一想,在机会出现的时候,自己有没有竭尽全力?有没有带来信息的增量?

大数据平台不是救世主!做好数字化转型,得先解决这一问题

 

当然,大数据平台项目只是做到了先破后立,但它不是终极救世主。

项目结束后,如果企业始终未建立起跨部门的数据汇通的组织、机制和流程,一旦公司风向、人员及系统发生大的变动,以往通过项目建立起来的那点数据资产就经不起折腾了,具体表现在下面四个方面:

1、采集完整性问题

各业务条线数据资产的新增、变动情况封闭在各部门内部,导致企业级数据资产的盘点不全面,更新不及时,开放不充分。

2、跨域数据融合问题

企业数据管理团队处于业务的下游,往往对于业务知识的掌握不够全面,很难从企业级的视角发现数据融合融通带来的业务价值,虽然数据1+1>2的道理大家都知道,但真要数据团队给出一些数据融合带来更高业务价值的案例,还是有很大的挑战。

3、数据质量问题

数据汇通过程中往往存在源端供数质量差、不及时、保障缺失等问题。

这也很容易理解,对于你来说很重要的数据对于源端数据提供者来说可能一文不值,因为对整个企业长远来讲很有价值的数据对于某个部门短期来说不一定有价值,毕竟屁股决定脑袋,因此处理的优先级可能非常低。

4、应用拓展问题

究其根本,还是因为企业级的数据团队往往缺乏企业级的应用视野。

以上四个问题,本质上是大数据汇通工作缺乏企业级机制的保障。

(此处已添加小程序,请到今日头条客户端查看)

虽然数据团队也许通过项目化的方式已经事实上承担起企业级数据资产汇通的工作,但如果企业各个部门对于这个事情缺乏共识,以上问题是很难彻底解决的。

有人会讲,强扭的瓜不甜啊,你即使强制建立相关的机制流程,人家不配合照样不配合,做的慢一点你也没办法。

这在大数据运营的初期有道理,但一旦进入规模化阶段,靠人情世故来推动大数据汇通的改善就很难了,因为客户不会买账。

这里给点建议吧。

数据管理能力成熟度模型(DCMM)是针对一个组织数据管理、应用能力的评估框架如下图所示:

大数据平台不是救世主!做好数字化转型,得先解决这一问题

 

其中受管理级稳健级都明确提到企业建立标准化数据管理流程的必要性,这个跟笔者的认知相符,其实最难的是落实到实操层面

现在很多企业认识到了IT的重要性,比如成立了企业级的IT架构委员会,这是非常大的进步。

企业级IT组织的建立对于企业级数据汇通机制的建立至关重要,因为在大多传统企业,很难像互联网公司那样设立CDO岗位直通管理层,毕竟基因不同。

但光有一个企业级组织的名头也是不够的,必须设立具体的岗位、角色和职责。DAMA里面就明确提到了跨部门数据专业工作组(数据治理的跨职能团队)这类组织中数据专员角色的重要性。

笔者非常认可。只有设立各个部门的数据代表及数据专员,才能解决前面提到的一系列问题,比如业务知识不理解问题。

大数据平台不是救世主!做好数字化转型,得先解决这一问题

 

总之一句话,要彻底打破企业的数据部门墙,一方面依赖企业对于IT和数据的认知和重视程度,能够给予组织、机制和资源上的保障,另一方面则需要数据团队积极作为,给出合理的策略,否则就没什么希望了。

已标记关键词 清除标记